1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
| package main
import ( "encoding/json" "fmt" "io/ioutil" "math" "math/rand" "os" "sort" "strings" "time" )
type Document struct { Content string `json:"content"` Metadata map[string]string `json:"metadata"` }
type GRPOModel struct { documents []*Document policyWeights map[string]float64 groupSize int temperature float64 }
func NewGRPOModel(groupSize int, temperature float64) *GRPOModel { return &GRPOModel{ documents: make([]*Document, 0), policyWeights: make(map[string]float64), groupSize: groupSize, temperature: temperature, } }
func (m *GRPOModel) LoadDocument(filePath string) error { data, err := ioutil.ReadFile(filePath) if err != nil { return err } var doc Document if err := json.Unmarshal(data, &doc); err != nil { doc = Document{ Content: string(data), Metadata: map[string]string{ "source": filePath, "type": "text", }, } } m.documents = append(m.documents, &doc) fmt.Printf("成功加载文档: %s\n", filePath) return nil }
func (m *GRPOModel) preprocessContent(content string) []string { content = strings.ToLower(content) content = strings.ReplaceAll(content, "\n", " ") content = strings.ReplaceAll(content, "\r", " ") content = strings.ReplaceAll(content, "\t", " ") replacer := strings.NewReplacer( ".", " ", ",", " ", "!", " ", "?", " ", ";", " ", ":", " ", "\"", " ", "'", " ", "(", " ", ")", " ", "[", " ", "]", " ", "{", " ", "}", " ", ) content = replacer.Replace(content) words := strings.Fields(content) return words }
func (m *GRPOModel) Learn() { fmt.Println("开始GRPO学习过程...") vocabulary := make(map[string]float64) for _, doc := range m.documents { words := m.preprocessContent(doc.Content) for _, word := range words { if _, exists := vocabulary[word]; !exists { vocabulary[word] = 0.0 } vocabulary[word] += 1.0 } } wordGroups := m.groupWords(vocabulary) for groupID, words := range wordGroups { fmt.Printf("处理分组 %d,包含 %d 个词汇\n", groupID, len(words)) totalReward := 0.0 for _, word := range words { totalReward += vocabulary[word] } avgReward := totalReward / float64(len(words)) for _, word := range words { reward := vocabulary[word] relativeAdvantage := reward - avgReward currentWeight := m.policyWeights[word] newWeight := currentWeight + 0.1*relativeAdvantage if m.temperature > 0 { newWeight = newWeight / m.temperature } m.policyWeights[word] = newWeight } } fmt.Printf("GRPO学习完成,共学习 %d 个词汇\n", len(m.policyWeights)) }
func (m *GRPOModel) groupWords(vocabulary map[string]float64) map[int][]string { type wordFreq struct { word string freq float64 } wordList := make([]wordFreq, 0, len(vocabulary)) for word, freq := range vocabulary { wordList = append(wordList, wordFreq{word, freq}) } sort.Slice(wordList, func(i, j int) bool { return wordList[i].freq > wordList[j].freq }) groups := make(map[int][]string) groupID := 0 for i := 0; i < len(wordList); i += m.groupSize { end := i + m.groupSize if end > len(wordList) { end = len(wordList) } groupWords := make([]string, 0, m.groupSize) for j := i; j < end; j++ { groupWords = append(groupWords, wordList[j].word) } groups[groupID] = groupWords groupID++ } return groups }
func (m *GRPOModel) Parse(input string) string { fmt.Println("开始运行时解析...") inputWords := m.preprocessContent(input) relevantFragments := m.retrieveRelevantFragments(inputWords) response := m.generateResponse(relevantFragments, inputWords) return response }
func (m *GRPOModel) retrieveRelevantFragments(inputWords []string) []string { fragments := make([]string, 0) for _, doc := range m.documents { content := strings.ToLower(doc.Content) relevanceScore := 0.0 for _, word := range inputWords { if strings.Contains(content, word) { weight := m.policyWeights[word] relevanceScore += math.Abs(weight) } } if relevanceScore > 0.5 { for _, word := range inputWords { if idx := strings.Index(content, word); idx != -1 { start := idx - 50 if start < 0 { start = 0 } end := idx + len(word) + 50 if end > len(content) { end = len(content) } fragment := content[start:end] fragments = append(fragments, fragment) } } } } return fragments }
func (m *GRPOModel) generateResponse(fragments []string, inputWords []string) string { if len(fragments) == 0 { return "未找到相关信息" } candidates := make([]string, m.groupSize) rand.Seed(time.Now().UnixNano()) for i := 0; i < m.groupSize; i++ { fragmentIdx := rand.Intn(len(fragments)) fragment := fragments[fragmentIdx] keywords := make([]string, 0) for _, word := range inputWords { if weight, exists := m.policyWeights[word]; exists && weight > 0 { probability := 1.0 / (1.0 + math.Exp(-weight)) if rand.Float64() < probability { keywords = append(keywords, word) } } } if len(keywords) > 0 { template := "根据您的问题,相关信息是:%s。关键词:%s" candidate := fmt.Sprintf(template, fragment, strings.Join(keywords, ", ")) candidates[i] = candidate } else { candidates[i] = fmt.Sprintf("找到相关内容:%s", fragment) } } candidateScores := make([]float64, m.groupSize) for i, candidate := range candidates { score := 0.0 for _, word := range inputWords { if strings.Contains(candidate, word) { score += m.policyWeights[word] } } candidateScores[i] = score } avgScore := 0.0 for _, score := range candidateScores { avgScore += score } avgScore = avgScore / float64(m.groupSize) bestIdx := 0 bestAdvantage := -1e9 for i, score := range candidateScores { advantage := score - avgScore if advantage > bestAdvantage { bestAdvantage = advantage bestIdx = i } } return candidates[bestIdx] }
func (m *GRPOModel) SaveModel(filePath string) error { data := map[string]interface{}{ "policy_weights": m.policyWeights, "group_size": m.groupSize, "temperature": m.temperature, } jsonData, err := json.MarshalIndent(data, "", " ") if err != nil { return err } return ioutil.WriteFile(filePath, jsonData, 0644) }
func (m *GRPOModel) LoadModel(filePath string) error { data, err := ioutil.ReadFile(filePath) if err != nil { return err } var modelData map[string]interface{} if err := json.Unmarshal(data, &modelData); err != nil { return err } weights := make(map[string]float64) if weightsData, ok := modelData["policy_weights"].(map[string]interface{}); ok { for word, value := range weightsData { if floatValue, ok := value.(float64); ok { weights[word] = floatValue } } } m.policyWeights = weights if groupSize, ok := modelData["group_size"].(float64); ok { m.groupSize = int(groupSize) } if temp, ok := modelData["temperature"].(float64); ok { m.temperature = temp } return nil }
func main() { model := NewGRPOModel(3, 0.7) fmt.Println("=== 文档学习阶段 ===") docFiles := []string{"doc1.json", "doc2.json", "doc3.json"} createExampleDocuments(docFiles) for _, file := range docFiles { if err := model.LoadDocument(file); err != nil { fmt.Printf("加载文档 %s 失败: %v\n", file, err) } } model.Learn() if err := model.SaveModel("grpo_model.json"); err != nil { fmt.Printf("保存模型失败: %v\n", err) } fmt.Println("\n=== 运行时解析阶段 ===") newModel := NewGRPOModel(3, 0.7) if err := newModel.LoadModel("grpo_model.json"); err != nil { fmt.Printf("加载模型失败: %v\n", err) } else { fmt.Println("模型加载成功") } newModel.LoadDocument("doc1.json") newModel.LoadDocument("doc2.json") newModel.LoadDocument("doc3.json") queries := []string{ "Go语言的特点是什么", "机器学习的基本概念", "人工智能的发展历史", } for _, query := range queries { fmt.Printf("\n查询: %s\n", query) response := newModel.Parse(query) fmt.Printf("响应: %s\n", response) } cleanupExampleDocuments(docFiles) os.Remove("grpo_model.json") }
func createExampleDocuments(files []string) { docs := []map[string]interface{}{ { "content": "Go语言是一种静态类型、编译型语言,由Google开发。它的主要特点包括:并发支持(goroutines)、垃圾回收、类型安全、快速编译。Go语言语法简洁,标准库丰富,适合构建高性能网络服务。", "metadata": map[string]string{"topic": "programming", "language": "go"}, }, { "content": "机器学习是人工智能的一个分支,它使计算机系统能够从数据中学习并改进性能,而无需显式编程。主要类型包括监督学习、无监督学习和强化学习。常见算法有线性回归、决策树、神经网络等。", "metadata": map[string]string{"topic": "ai", "field": "machine_learning"}, }, { "content": "人工智能的发展历史可以追溯到1950年代。1956年达特茅斯会议被认为是AI的诞生标志。经历了多次寒冬期和复兴期,21世纪以来,由于深度学习、大数据和计算能力的提升,AI进入了快速发展阶段。", "metadata": map[string]string{"topic": "history", "field": "ai_evolution"}, }, } for i, file := range files { if i < len(docs) { data, _ := json.MarshalIndent(docs[i], "", " ") ioutil.WriteFile(file, data, 0644) } } }
func cleanupExampleDocuments(files []string) { for _, file := range files { os.Remove(file) } }
|